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Solving Puzzles Using Maps 

by George Bell 
 

When driving in an unfamiliar city, one consults a highway map.  When faced with an 
unfamiliar puzzle, wouldn’t it be nice to have a map of it?  I claim that when we solve a 
disassembly puzzle, we instinctively create a mental map of the puzzle.  I think of this 
mental map as a graph, with the nodes being the possible states of the puzzle, and edges 
representing physical motions of the puzzle pieces which change the puzzle from one 
state to another.  After we solve a puzzle and have this mental map to follow, solving it a 
second time tends to be significantly easier. 
 
Why not write down this mental map to help other people navigate the puzzle?  The 
problem is that many puzzles have too many possible states, or there may be no simple 
way to describe a particular state of the puzzle.  For example, the physical states of a burr 
puzzle tend to be difficult to describe.  The solution is usually given as a sequence of 
motions of the puzzle pieces, often communicated by drawings.  Such a solution gives the 
sequence of edges followed in a path to the desired goal state (namely, disassembly).  
This is not a map of the puzzle, but analogous to turn-by-turn directions to take you from 
point A to point B, and turn-by-turn directions work perfectly well―provided you don’t 
make any wrong turns. 
 
Is it ever possible to write down a map of a puzzle?  One class of puzzle where mapping 
does work is sliding block puzzles.  Here a subset of possible puzzle states is generally 
selected, and the edges connecting them represent multiple sliding moves of the pieces.  
A map of the Century Puzzle covers three pages [1].  This map is superior to a list of 100 
moves needed to solve the puzzle.  For one thing it describes all possible states that can 
be reached by the puzzle.  So even if you are not in the starting state, you should be able 
to navigate to the solution. 
 
Another class of puzzle where maps work well are disentanglement puzzles involving 
rings or disks.  The number of possible states for such a puzzle is often quite small and 
the states easy to identify.  The difficulty lies mainly in figuring out what moves are 
possible, and whether they take you closer or farther from the goal.  I will now describe 
two such puzzles that can be solved by creating a solution map. 
 

Hanayama’s Cast Duet 
 
This fascinating puzzle was designed by Oskar van 
Deventer. The puzzle consists of a metal grid with 9 
holes (see Figure 1), and what at first appears to be 
a single ring.  The ring is actually split like a bagel 
into identical halves which are magnetically 
connected.  The rings also contain a radial gap so 
that they can be inserted onto the grid.  The rings 
have a point which sticks into this gap (see Figure 2), 
allowing them to move along various slots between 
holes in the grid in one orientation only. 
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Figure 1.  Cast Duet grid 
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We number the holes in the metal grid as shown in 
Figure 1, where the outside of the grid is “hole 0”.  The 
grid itself is always kept in the orientation in Figure 1 (it 
may be tempting to turn it over to look at the slots on the 
bottom, but this is not necessary once you can read the 
map).  The position of a ring in the puzzle is denoted by 
a two digit number describing which two holes the ring 

spans.  The order of the two numbers is chosen so that, when the ring is spun around so 
that the point is up (toward you in Figure 1), the second number marks the location of the 
point.  For example, when the ring is off the grid, we can think of it as in state “00”.  We 
can place the ring on the grid by sliding it with point up onto hole 1, to state “01”, or with 
point down onto hole 8, to state “80”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 is a map of all the positions that can be reached by a single ring.  Horizontal 
moves in the map are done with the point down, and vertical moves with the point up.  
Thus, any transition from a horizontal to vertical move (or vice-versa) requires a 180° 
rotation of the ring. 
 
This is a very simple graph with few 3-way intersections.  Solving the puzzle requires 
placement (or removal) of both rings, which is slightly more complicated.  If you wish to 
place the connected ring between holes x and y, you need to navigate one ring to xy and 
the other to yx.  There are two problems which may occur, first the presence of the first 
ring may impede the other.  Second, the two rings may end up “back-to-back”, unable to 
interlock.  The first problem is usually easy to avoid, for the second problem, try placing 
the rings in the opposite order. 
 
As sold, the puzzle has 5 problems in increasing level of difficulty for paired-ring placement 
(the most difficult being the starting position of the puzzle, 90/09).  These 5 problems are 
denoted in Figure 3 by paired node symbols.  In fact, there are 28 possible ring 
placements, 8 off the edge of the grid, plus 20 internal locations: 6 horizontal, 6 vertical, 
and 8 diagonal.  The graph in Figure 3 has 56 nodes (and 00), indicating that we can place 
a single ring in either of two orientations in all 28 locations.  The grid seems to be designed 

the point 

Figure 2. Cast Duet rings 

Figure 3. A map of the Cast Duet showing all positions of a single ring 
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with this in mind, because not all slots in the grid are needed to solve the 5 problems that 
come with the puzzle. 
 
In fact, all 28 paired-ring positions can be reached, as I have verified by solving each in 
turn.  Most cases are not difficult with the map, the most difficult being 14/41, and 98/89.  
It is quite difficult to reach these positions because the two rings block one another.  I 
recommend these two difficult problems as they require solution techniques beyond the 
original 5 problems1. 
 

Hanayama’s Cast Disk 

 

Another invention of Oskar van 
Deventer, the Cast Disk puzzle 
consists of two metal disks, each 
with seven notches in the edge.  
Only in two special notches 
(labelled “1”) can the disks be 
separated, normally it is possible 
to rotate the disks between notches 
but not separate them.  Two other 
special notches (labelled “7”) are extra-long and allow the two disks to slide together into 
the spherical, interlocked, starting position. 
 
The two disks are very similar but are not identical, they can be differentiated by careful 
comparison of the notch labelled “4”.  The left disk is usually labelled “®HANAYAMA”, but 
unfortunately not all copies of the puzzle have this label.  For what follows this disk is 
always to be held in the left hand.  The notch-labelling scheme in Figure 4 is used in the 
Hanayama solution sheet (from Puzzlemaster [2]), which calls the Hanayama disk “B” and 
the other disk “A”.  To connect the disks, tilt the top of the right disk in Figure 4 toward 
you, and the bottom away from you. 
 
Figure 5 shows a map of all 49 positions that can be reached by this puzzle (every pair of 
notches can be connected).  The 2 digit notation xy means that notch x in the “Hanayama” 
disk is connected to notch y in the other disk.  The bLack links denote rotations of the Left 
disk, gRey links rotations of the Right disk (if grey cannot be distinguished from black in 
this print of the article, the disk to rotate can also be identified by which digit changes).  I 
find it interesting that a puzzle which is physically two interlocked rings has a map that is 
four interlocked rings!  This is a really a fairly simple maze, with few 3-way intersections,  
and most people wander somewhat blindly about it, finding a solution without too much 
trouble (my son solved it this way at age 6). 
 
One problem using this map is that, looking at the puzzle, it is not easy to tell which two 
notches are interconnected, and consequently where you are in the map.  This can be 
solved by sticking tiny labels at each notch (which I did to create the map), but I will now 
show you how to solve the puzzle without resorting to such aids. 
 
 

 
1 Solution for 98/89: move a ring to 98, then the second to 65 (easy), then to 68 and 69.  Moving from 68 
to 69 is difficult because it seems blocked by the other ring, but it is possible.  Then move the second ring 
easily to 59 and 89.  14/41 can be solved using a similar technique. 

Figure 4.  Notch labels for the two disks 
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Holding the puzzle as you always should, with the Hanayama disk in your left hand, 
suppose I give you the instructions “L2RL2R”, abbreviated “(L2R)2”.  This means, “turn the 
left disk two notches” followed by “turn the right disk one notch”, then repeat. “But wait!”, 
you say, “which direction do I turn each disk?”  While this can be a problem in general, I 
can choose a special set of moves, where at any point, there is only one way to turn the 
next disk.  I call this an unambiguous move sequence, because you can never be 
confused as to how to interpret the next move. 
 
The parts of the graph where confusion occurs are marked by arrows.  If I enter a node 
along such an arrow by turning one disk, I can then turn the opposite disk in either 
direction.  Thus, in order to know which way to proceed, I will need to figure out which way 
to turn the next disk.  Unambiguous move sequences are exactly those that avoid these 
arrows (moving against an arrow is perfectly valid and is not ambiguous).  One 
unambiguous disassembly sequence is (LR)2(L2R)2LR2LRL.  You should be able to follow 
this sequence through the map to verify that it never follows an arrow into a node. 
 
Note that any unambiguous sequence simply alternates left and right turns, moving 
usually one but occasionally two notches.  The above sequence can be more easily 
remembered by counting moves: “start with the left, then alternate single moves, 
except for moves 5, 7, and 10, which are double moves”. 
 
If we try to reverse this sequence to reassemble the puzzle, we discover that the assembly 
is ambiguous.  In fact, by looking at the map we see that there is no move sequence that 

Figure 5. A map of the Cast Disk showing which notches are interlocked. 
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disassembles the puzzle which is unambiguous both forward and backward.  This may 
seem a sad state of affairs, until we realize that there is no reason why we have to 
assemble the puzzle using the reverse of the disassembly.  You can assemble the puzzle 
using the unambiguous, simpler sequence: (LR)4LR2(LR)2. 
 
If you have a friend who thinks this puzzle is easy, one devious trick is to flip one of the 
disks 180° in the unassembled state (warning: this is also easy to do inadvertently).  The 
puzzle can then be assembled to the interlock position 77, and while the map is 
topologically similar to that in Figure 5, the details are completely different, and someone 
who has memorized the above sequences will become lost.  However, there is a good 
chance your friend may not even notice the difference if he solves the puzzle with the 
usual “maze-wandering” technique!  In any event, unambiguous assembly and 
disassembly sequences can be found in Table 1. 
 

Puzzle 
Orientation 

Solution 
Type 

Unambiguous 
Sequence 

Start 
with 

Double 
move #’s 

Number 
of moves* 

normal assembly (LR)4LR2(LR)2 L 10 14 

normal disassembly (LR)2(L2R)2LR2LRL L 5, 7, 10 13 

flipped assembly (RL)4RL2R2(LR)2 R 10, 11 15 

flipped disassembly (RL)4R2LR R 9 11 
(*) Two consecutive moves by the same disk are counted as a single move. 

Table 1. Summary of unambiguous move sequences for the Cast Disk. 
 

It is critical to be able to recognise the “flipped state” from the starting (77) or finishing 
positions (11).  If you  are in the flipped state, and make one move from 77, you will find 
yourself at 17 or 71 (instead of 67 or 76 as in Figure 5).  Similarly for the disassembled, 
flipped state, 11 leads to 12 or 21. 
 
If you have multiple copies of this puzzle, you can interlock more than two disks!  Each 
pair of disks will interlock using the map of Figure 5 (or the flipped map), but certain moves 
may be blocked by the other disk(s).  If your friend was not impressed by your first attempt, 
borrow his puzzle and return it fully assembled, but with a second (or third!) fully 
assembled puzzle linked to it.  This can be accomplished trivially by taking two assembled 
puzzles, and interlocking their 1 notches in the flipped state and moving to 12 or 21.  It 
can also be done in more subtle ways that are much harder to disassemble. If you 
understand how to read the solution map in Figure 5, you should be able to figure out how 
to do this. 

More Mapping 

Solution maps are a useful tool for solving as well as designing certain types of puzzles.  
Many puzzles involving rings and plates, or route-finding can potentially be mapped.  
Often, it can be difficult to come up with a notation for the positions that is easy to interpret.  
I was inspired to map the above puzzles by Rob Stegmann’s map of the Hanayama Cast 
Plate.  You can view it and several other puzzle maps on his web site [3].  
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Postscript 

In 2010 (after this article was published) I received an email from David Peck with his own 
map of the Cast Disk.  He made his map on a torus, and it looks quite different from my 
map; but they are, of course, topologically the same.  Here is David’s map converted to 
my notation: 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Figure 5, “S” denotes the starting position where the disks are interlocked, and “F” the 
final position where the disks are separated.  Since the map is on a torus, you can move 
off the top (or right) edge to reappear on the bottom (or left).  The red path shows the 
unambiguous disassembly sequence in Table 1, and the blue path traces the 
unambiguous assembly sequence.  Note that an arrow in Figure 4 corresponds in 
Figure 5 to entering a T-junction from the bottom. 
 
Finally, Figure 6 shows my map for the Cast Disk when one of the disks is flipped. 
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Figure 5. David Peck’s map of the Cast Disk, drawn on a torus. 
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Figure 6.  My map for the Cast Disk puzzle when the disks are flipped. 
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