
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Classification of Polyspheres 
by George Bell 

 
Polyspheres are polyforms made by connecting spheres in the face-centered cubic 
(FCC) lattice (often called “cubic close packing”).  Polyspheres are interesting objects 
from which to create 3D puzzles.  As we will see, polyspheres include, in a sense, all 
polyominoes and all polyhexes.  We can slice the FCC lattice along certain planes to 
obtain tetrahedrons, octahedrons or cubes.  Thus, in polyspheres, we have a set of 
puzzle pieces that can potentially build three of the Platonic solids (to be precise, we 
obtain analogs of these solids made from stacked spheres).  Many other interesting 
shapes such as 4-sided pyramids (or half-octahedrons) and cuboctahedrons are also 
possible.  It is somewhat surprising that CFF is the only publication in which polysphere 
articles have appeared [1-5]. 
 
A convenient way to think of the FCC lattice is as edge-joined cubes (Figure 1).  We 
consider all unit cubes with centers at integer coordinates (x, y, z) where the sum of the 
coordinates x + y + z is even.  In its “Spheres” geometry, BurrTools [6] uses exactly such 
an internal representation.  The restriction on the sum of the coordinates eliminates half 
the cube locations, and ensures that cubes can only be joined along an edge.  Of 
course, when displaying in the “Spheres” geometry, BurrTools replaces each cube by a 

sphere of diameter 2 . 

 
 
 
 
 
 
 

 
But this is only the representation of the pieces. In BurrTools, the way pieces are 
handled (comparison, rotation, etc.) differs a lot from the “cube” geometry.  Figure 2 (left) 
shows two configurations of three edge-joined cubes.  These two objects are not 
identical—they are mirror images of one another.  A mathematician would say they are 
chiral (a term for any 3D object not identical to its mirror image).  When spheres are 
substituted for cubes (middle) the resulting polyspheres are identical (this solid is not 
chiral, or achiral).  Although these puzzle pieces are 3D objects, the three cube or 
sphere centers lie in a plane (a hexagonal plane in which the spheres are packed 
hexagonally), so all of these pieces are related to the same trihex (right). 
 
 
 
 
 
 
 
Figure 2. Three edge-joined cubes (left), the generated trispheres (middle) 

and the related trihex (right). 
 

Figure 1. Four edge-joined cubes (left), the generated tetrasphere (middle) 
and the related tetromino (right). 

 



 
Two spheres touch at a point, so to make physical polysphere puzzle pieces one usually 
adds a cylinder to make a strong connection.  This is now done automatically by 
BurrTools [6] in its STL export; most woodworkers use wood dowels.  We note that a 
cylinder of any diameter can be used up to the sphere radius. 
 
If we imagine spheres packed in the FCC lattice, and allow them to expand at the same 
rate, filling all remaining gaps, each sphere becomes a rhombic dodecahedron (RD).  
This 12-sided space-filling solid packs in the geometry of the FCC lattice, and can also 
be obtained by starting from a cube and beveling the 12 edges.  We can also join 
rhombic dodecahedrons to make puzzle pieces [7], we call them “polyRD”. 
 
Polyspheres and PolyRD are closely related, but are not identical.  If we take any 
polysphere, we can convert it to a PolyRD by building it out of RD’s (because both share 
the FCC lattice).  The subtle issue is that there can be more than one way to do this.  
For example, when the Figure 2 polysphere is converted to polyRD it becomes chiral, 
with two mirror-image versions possible.  A remarkable fact found by Torsten Sillke [8] is 
that the only polyspheres which become chiral when converted to polyRD lie in the 
hexagonal plane (so they are all related to polyhexes).  All other polyspheres correspond 
to a unique polyRD. 
 
We should point out that these conclusions depend strongly on the fact that we consider 
only connected polyspheres and polyRD.  If we allowed disconnected pieces, many 
more differences between polyspheres and polyRD would be seen. 
 
We have now seen the two types of planar polyspheres (meaning that the sphere 
centers lie in a plane).  Since these are directly related to polyominoes and polyhexes, 
there is a certain familiarity to them.  The ways that they can fit together to make 3D 
objects are remarkable and surprising, making for excellent puzzles [1, 3, 4, 9].  Most of 
these puzzles are not interlocking. 
 
Most polyspheres are truly 3D objects, and come in mirror image pairs.  Even 3D pieces 
using 5 spheres (pentaspheres) can be very confusing.  Consider that one can look at a 
diagram of a face-joined polycube piece, even with 20 cubes, and easily enter it into 
BurrTools.  The same process for a general pentasphere can be baffling. 
 

Classification and Notation 
 
Torsten Sillke has a nice web page [8] where he lists all polyspheres composed of n 
spheres for n up to 5 (he has sent me additional files up to n = 8).  He gives the integer 
coordinates of the sphere centers, and for each n sorts the polyspheres 
lexicographically, meaning that he sorts the n sphere center coordinates as a long string.  
This gives a well-defined ordering of polyspheres, but mixes them fairly randomly with 
respect to planar and non-planar types. 
 
I present here an alternative notation where polyspheres that share similar properties 
are kept together.  Every polysphere is classified into exactly one of the five types: 
 



 
 
 
 
 
 
 

A specific polysphere is denoted by, for example, “5M12”, where 

➢ “5” represents the number of spheres (n). 
➢ “M” is the piece type. 
➢  “12” is a unique identifying number within the M pentasphere type. 

 
The pieces are sorted by the number of spheres, then the type (in the order above) and 
finally by identifying number.  To determine the identifying number, we could use 
Torsten’s lexicographic ordering.  However, it would be nice if the first piece “nS1” was 
always the linear polysphere, and this is not the case with Torsten’s scheme.  This piece 
is special because, technically, it is the only piece that belongs in both type S and type 
H.  For the purposes of our notation, this piece will be considered to be only in type S. 
 
I tried a number of possibilities for sorting within a type, but eventually settled on a 
scheme based on the principal moments of inertia of the polysphere, 𝜆1 ≥ 𝜆2 ≥ 𝜆3.  The 
sorting is by 𝜆1, with 𝜆2 and 𝜆3 breaking ties.   Even using all three, ties can occur.  The 
physics-oriented reader may enjoy investigating the 12 pentominoes and find the unique 
pair which have the same three principal moments of inertia, and thus behave identically 
as rotating, rigid bodies.  For such cases, final tie breaking is done using Torsten’s 
lexicographic (alphabetic) ordering. 
 
When a piece is chiral, the mirror image piece is denoted by using a lower case type, for 
example 5M12 and 5m12 are different pieces that are mirror images of one another.  
The distinction between X and H types is only significant for polyRD—3X1 and 3x1 are 
identical polyspheres, but differ as polyRD (this is the piece in Figure 2). 
 
The total number of n-sphere polyspheres increases very rapidly, approximately 10-fold 
with each added sphere.  The total number of nonospheres (n = 9) is over 3 million (over 
99% type M), by comparison there are merely 48,311 nonominoes.  Table 1 gives the 
total number of pieces of each type to n = 9.  The row “OEIS” identifies certain 
sequences in the On-line Encyclopedia of Integer Sequences [10], the column “RD + 
Mir” counts PolyRDs including mirror images. 
 
I have also created BurrTools files containing all polyspheres up to hexaspheres (n = 6).  
These files show each piece labeled using my notation, that of Torsten Sillke [8], and 
Ishino Keiichiro [11].  These files can be found on the CFF web site under the 
supplementary material for issue 81.  Please download them! 
 
The highest numbered polyspheres of type N are the most compact and symmetric of 
polyspheres.  For example 4N4 is a 4-ball tetrahedron, 5N19 is a 5-ball pyramid, and 
6N97 is a 6-ball octahedron. 
 

S = planar in the square geometry (like Figure 1, equivalent to a polyomino) 
H = planar in the hexagonal geometry, and not X 
X = planar in the hexagonal geometry, chiral made from rhombic dodecahedrons 
N = non-planar and non-chiral (3D, usually with a plane or center of symmetry) 
M = chiral, mirror image is different (must be 3D) 
 



n S H X N M Total Tot + Mir RD + Mir 
OEIS A105 H+X+1=A228   A38173 A38174 A38172 

1 1 0 0 0 0 1 1 1 
2 1 0 0 0 0 1 1 1 
3 2 1 1 0 0 4 4 5 
4 5 3 3 4 5 20 25 28 
5 12 6 15 19 79 131 210 225 
6 35 16 65 97 998 1,211 2,209 2,274 
7 108 28 304 377 11,917 12,734 24,651 24,995 
8 369 72 1,375 1,732 140,610 144,158 284,768 286,143 
9 1,285 123 6,448 6,623 1,673,258 1,687,737 3,360,995 3,367,443 

Table 1.  Count of the number of n-sphere polyspheres by type (from [8]). 
 
One advantage of this notation is that it applies to both polyspheres and polyRD, and it 
is easy to make the conceptual shift from polyspheres to polyRD.  Any puzzle which 
contains no pieces of type X can be immediately converted to polyRD.  Note that this 
only means the pieces will fit together in the final shape, it says nothing about whether 
the puzzle can actually be assembled from polyRD.  If the puzzle contains pieces of type 
X, for each X piece one must either include the polyRD piece or its mirror image.  If such 
a puzzle assembles in multiple configurations, it may not work made from polyRD, 
because one assembly is likely to require X, and another its mirror image x. 
 

Pentasphere Puzzles 
 
Like the popular pentominoes, puzzle pieces made from 5 spheres—the pentaspheres, 
are among the most interesting.  But there are 210 pentaspheres!  Tetrahedron ball 
stacks of height 3, 4 and 5 can be evenly divided into pentaspheres 
 
In how many ways can a 10-ball tetrahedron be separated into two pentaspheres 
(identical or not)?  This basic question can be answered deductively, or using BurrTools 
[5].  There are only five ways to do it: {5H4, 5N18}, {5H6, 5N14}, {5M66, 5M70}, {5M64, 
5m64} and {5M77, 5m77}.  We can see from the notation that the first two involve a 
planar piece, and a symmetric 3D piece, while the last two involve a piece plus its mirror 
image. 
 
Perhaps the most interesting of the five is the middle one, {5M66, 5M70}.  To see if 
these two pieces can be assembled, I glued 10 wooden balls into the final configuration.  
I found that the two pieces could not be separated without breaking them.  This 
assembly is interlocking but cannot be assembled from rigid pieces.  However, if the 
pieces are made from a sufficiently strong and flexible plastic, they snap together quite 
nicely. 
 
The reader may find the level diagrams in Figure 3 rather baffling at first.  Here sphere 
centers can occur at Cartesian coordinates where x + y + z is even, and the numbers 
(when present) signify a sphere at this z-level.  This is exactly the way these pieces can 
be entered into BurrTools, but is admittedly an unusual way to look at a tetrahedron (far 
right, Figure 3). 
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The separation {5M64, 5m64} is also interlocking, and rigid disassembly is impossible.  
Even with slightly flexible pieces this puzzle cannot be assembled.  Iwasawa Hirokazu 
uses rotating joints to make assembly possible in his “Quinto Twin” puzzle [12]. 
 
The final separation {5M77, 5m77} is not interlocking—however, it has another unusual 
property.  It is the only one of the five for which it is possible to take two sets of pieces, 
and build a 20-ball tetrahedron.  Moreover, using three sets of pieces, plus the X-
pentomino 5S12, one can build a 35-ball tetrahedron.  Finally, using 12 complete sets of 
{5M77, 5m77} one can build a 120-ball tetrahedron (8 balls high), and the solution is 
unique.  Because piece 5M77 loves to stack into tetrahedrons of many sizes, I call it the 
“tetrahedron building block”.  All the puzzles so far mentioned do not make use of a 
piece of type X, so can equally be made from RD.  This is particularly important for this 
last puzzle using 5M77 and 5m77, which assembles into multiple configurations. 
 
A second source of puzzles is to consider all ways to build the 20-ball tetrahedron from 
four identical or mirror image pentaspheres.  This has been investigated previously for 
planar pieces, with some results for non-planar pieces [3]. 
 
First, consider the separation of the 20-ball tetrahedron into two identical “half-
tetrahedrons” (Figure 4).  Using BurrTools, this half-tetrahedron can be divided into two 
identical pieces using 5X11, 5X14, 5N18, 5M20 or 5M70. 
 
To build a 20-ball tetrahedron, we can use two sets of any piece which can build the 
half-tetrahedron, or four of 5H4, 5H6, 5X9, 5X10, 5X12, 5M12, 5M21, 5M37, 5M46, 
5M66 or 5M77, the last 6 of which require two mirror image pairs.  My favorite among 
these is 5M12—it cannot be assembled from rigid pieces but snaps together quite tightly 
made from plastic.  I call this puzzle “Interlocking Tetrahedron 1” [11].  This puzzle and 
5M37 are closely related to Wiezorke’s elegant puzzle “Blossom” [9].  The 5M37 version 
assembles even from rigid pieces. 
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Another interesting puzzle uses piece 5M21 (two copies plus two mirror images).  This 
puzzle appears in Wiezorke’s Compendium [9] as “Stan’s Tetrahedron (1988)”.  
However, Stan Isaacs denies inventing this puzzle!  This puzzle interlocks nicely and 

Figure 3. Level diagram for pentaspheres to build a 10-ball Tetrahedron. 

Figure 4. Level diagram for pentaspheres to build a 20-ball tetrahedron. 
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can be assembled from rigid pieces.  I have made several beautiful copies out of 
stainless steel using Shapeways [13].  It has also been reinvented by Iwahiro Iwasawa 
as “Ball Pyramid Puzzle Quartet” [12]. 
 
A final nice puzzle uses four copies of the planar polysphere 5X11.  This can be solved 
in a simple way by building two half-tetrahedrons, or more interestingly in an interlocking 
assembly.  Stan Isaacs told me he remembers discovering this interlocking solution 
around 1988.  When made from PolyRD, this puzzle must be made using two copies of 
5X11 and two copies of its mirror image 5x11. 
 
Polysphere puzzles can be produced in plastic or metal using 3D printing technology.  
BurrTools [6] exports directly to STL format for use in a 3D printer.  Many of the puzzles 
above can be purchased from the 3D printing company Shapeways [13], or you can 
easily devise and print your own puzzle designs. 
 
I thank Joe Becker, Peter Esser, Markus Götz, Stan Isaacs, Matti Linkola and Torsten 
Sillke for many useful discussions regarding polyspheres.  A special thanks to Andreas 
Röver for all his hard work refining BurrTools. 
 
References 
  [1] Bernhard Wiezorke, Puzzling with Polyspheres, CFF 25, part 3 (1990) 10-17. 
  [2] Koos Verhoeff and Tom Verhoeff, Hollow Pyramid Puzzle, CFF 31 (1993) 16-17. 
  [3] Torsten Sillke and Bernhard Wiezorke, Stacking Identical Polyspheres—Part 1: 

Tetrahedra, CFF 35 (1994) 11-17. 
  [4] Torsten Sillke and Bernhard Wiezorke, Stacking Identical Polyspheres—Part 2: 

Square Pyramids, CFF 50, part 6 (1999) 14-18. 
  [5] Markus Götz, The Tetrahedral Ball Pyramid and its Structure, CFF 66 (2005), 19-23. 
  [6] BurrTools, http://burrtools.sourceforge.net/ 
  [7] Stewart Coffin, Geometric Puzzle Design, A K Peters (2009) 153-160. 
  [8] Torsten Sillke, Notations for Polyspheres, 
 http://www.mathematik.uni-bielefeld.de/~sillke/PENTA/notar 
  [9] Bernhard Wiezorke, Compendium of Polysphere Puzzles, 1996 (self-published). 
[10] On-line Encyclopedia of Integer Sequences (OEIS),  
 http://www.research.att.com/~njas/sequences/ 
[11] Ishino Keiichiro, Puzzle will be played, 
 http://www.asahi-net.or.jp/~rh5k-isn/Puzzle/ 
[12] Iwasawa Hirokazu, Puzzle Shop Torito,  http://torito.jp 
[13] Shapeways.com, http://www.shapeways.com/ 

http://burrtools.sourceforge.net/
http://www.mathematik.uni-bielefeld.de/~sillke/PENTA/notar
http://www.research.att.com/~njas/sequences/
http://www.asahi-net.or.jp/~rh5k-isn/Puzzle/
http://torito.jp/
http://www.shapeways.com/

