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Figure 1a shows a beautiful geometrical object composed of five self-intersecting 
tetrahedra, made by John Devost [1].  It is made from 30 identical solid brass cylinders 
with magnets embedded in the ends, together with 20 ball bearings.  When assembled, the 
ball bearing centres lie at the vertices of a dodecahedron, and on each face the rods show 
a nice spiral form.  Some call the assembly a puzzle, others say it is only a geometric 
construction.  I can attest that assembly is not easy! 
 
In Figure 1b the same geometrical shape (actually its mirror image) is made from 30 
identical wood struts of triangular cross-section with embedded magnets.  This puzzle 
“Merkaba” is exquisitely crafted in exotic hardwoods by Lee Krasnow [2]. 
 
The cylinder or rod version is easier to make, and inexpensive copies can be made from 
colored pencils.  If you wish to build one, at what length do you cut your colored pencils?  If 
you cut them too long, the structure will be loose, but if you cut them too short, it won’t go 
together.  The perfect length can be determined by trial and error, or by looking for 
intersecting solids in a CAD program, but here I will calculate it exactly.  I present these 
calculations with the hope that these methods will prove useful in other similar puzzles. 
 

Five Intersecting Tetrahedra made from rods and ball bearings 

 
A simple representation of a tetrahedron uses the 4 vertices of a cube which are separated 

by a face diagonal: (1,-1,-1), (-1,1,-1), (-1,-1,1) and (1,1,1).  Any pair is separated by 2√2, 
the edge length of the tetrahedron.  We now rotate this tetrahedron about a certain axis in 
multiples of 360/5 = 72 degrees to obtain the other four tetrahedra in the structure.  This 
rotation is difficult to conceptualize because the rotation axis is not aligned with any edge 
of the tetrahedron or underlying cube, but is dictated by the geometry of a dodecahedron.  

Figure 1. Two versions of Five Intersecting Tetrahedra. 
 



Indeed, it is exactly this subtlety that makes the object tricky to assemble.  Mathematically, 
this rotation is multiplication by the “golden rotation matrix”: 

𝑅 =
1

2
[

1 −𝜑 1 𝜑⁄

𝜑 1 𝜑⁄ −1

1 𝜑⁄ 1 𝜑
] 

Here 𝜑 = (√5 + 1) 2⁄  is the golden ratio, which satisfies the equation 𝜑2 = 𝜑 + 1, as well 

as  1 𝜑⁄ = 𝜑 − 1. 
 
The diameter 𝑑 of the thickest rod which can be used is the minimum value of the distance 
between any pair of edges among different tetrahedra.  This distance is attained between 
the edge from 𝑥⃗1 = (−1,−1,1) to 𝑥⃗2 = (1,1,1) and the edge from 𝑥⃗3 = 𝑅𝑥⃗1 = (1 𝜑⁄ ,−𝜑, 0) 
to 𝑥⃗4 = 𝑅𝑥⃗2 = (0, 1 𝜑⁄ , 𝜑).  To calculate the minimum distance between these skew lines, 

we use a standard vector projection formula, 𝑑 = |𝑐 ∙ (𝑎⃗ × 𝑏⃗⃗)| |𝑎⃗ × 𝑏⃗⃗|⁄ , where 𝑎⃗ = 𝑥⃗2 − 𝑥⃗1, 

𝑏⃗⃗ = 𝑥⃗4 − 𝑥⃗3 and c⃗ = 𝑥⃗3 − 𝑥⃗1 [3].  Cranking out the cross product we obtain the first ratio 
given in Table 1.  The distances for the other ratios in Table 1 are much easier to 
determine. 
  

Type of ratio Approx. Value Exact Ratio 

 Tetrahedron edge length to rod diameter d 13.544 √2𝜏 
 Internal tangent sphere diameter to rod diameter d 8.577,        𝜏 − 1 
 Dodecahedron edge length to rod diameter d   5.919 𝜏 𝜑⁄  
 Jig circle diameter to rod diameter d 16.294 2𝜑𝜏 √2 + 𝜑⁄  

 Jig tall tower height to rod diameter d   8.147 𝜑𝜏 √2 + 𝜑⁄  

 Jig short tower height to rod diameter d   5.035 𝜏 √2 + 𝜑⁄  

Table 1.  Ratios for the rod version,  𝜏 = 𝜑2√15 − 𝜑 = √27 + 40𝜑 ≅ 9.577. 

 
For example, suppose we construct our puzzle from standard colored pencils with 
diameter 𝑑 = 7.2mm, and 𝑠 = 14mm diameter ball bearings.  Let 𝑙 be the rod length.  The 
tetrahedron edge length is the distance between ball bearing centres (𝑙 + 𝑠), so Table 1 
indicates we should cut our pencils at 𝑙 = (13.544)(7.2mm) − 14mm or 83.5mm.  This is the 
absolute minimum rod length — due to piece imperfections one may want to cut them 
slightly longer.  In addition, we may want to inset the magnets into the rods, as in Figure 
1a.  To take this inset into account the rod length must be increased by 2mm (the exact 

amount is 𝑠 − √𝑠2 − 𝑑2).  Ball bearings with diameter less than 𝑠 = √3𝑑 should not be 
used, because the fit of the puzzle will be off.  For aesthetic reasons, somewhat larger ball 
bearings seem to be preferable (the Figure 1a puzzle is made from quarter-inch rods and 
14mm ball bearings, so 𝑠 𝑑⁄ = 2.2). 
 
We can assemble the puzzle with a ball inside, and the 
largest that will fit has diameter 6.18cm = (8.577)(7.2mm).  
Stephen Chin has made a simple jig which can aid in 
assembly.  His jig is five magnets embedded in a board at the 
vertices of a pentagon.  The pentagon side length to be used 
for this is 4.26 cm.  A more elaborate jig was invented by John 
Devost, he glues five short and five tall dowels to a board, 
equally spaced around a circle of diameter 11.7 cm 

Figure 2. Hand-made tower jig. 



(Figure 2).  Using Table 1, we calculate that the tall and short towers have heights of 5.87 
cm and 3.63 cm. 
 

Lee Krasnow’s Merkaba 
 
Similar calculations can find the piece dimensions for this puzzle.  The struts have a 
triangular cross section as shown in Figure 3a.  The triangles are isosceles with the odd 
angle given by the dihedral angle of the tetrahedron, cos−1 1/3 ≅ 70.53°, and the other two 

angles tan−1 √2 ≅ 54.74°. 
 
 
 
 
 
 
 
 
 
 
 
 
We want to determine the value of f such that the struts just touch.  In this case three  
struts touch at a point which is the midpoint of an edge of a tetrahedron.  Conse-quently, 
this distance f can be calculated by another vector formula for the minimum distance 
between the midpoint 𝑥⃗0 = (0,0,1) (between 𝑥⃗1and 𝑥⃗2) and the edge from 𝑥⃗3 = 𝑅𝑥⃗1 to 𝑥⃗4 =
𝑅𝑥⃗2.  This distance is 𝑓 = |(𝑥⃗3 − 𝑥⃗0) × (𝑥⃗4 − 𝑥⃗0)| |𝑥⃗4 − 𝑥⃗3|⁄  [4], which gives the first ratio in 
Table 2.  Note that the Lee Krasnow Merkaba of Figure 1b uses f=12.2 mm, which gives a 
tetrahedron edge length of 14.8 cm. 
 

Type of ratio Approx. Value Exact Ratio 

 Strut length (tetrahedron edge length) to f 12.092 8𝜑2 √3⁄  
 Internal tangent sphere diameter to f   6.917 2𝜑3√2 √3⁄  
 Dodecahedron edge length to f   5.284 4𝜑√2 √3⁄  

Table 2.  Ratios for the Merkaba. 
 
Origami provides an inexpensive method of building this version [5, 6].  Here the struts are 
made from 1:3 paper rectangles which are folded twice along their long dimension.  This 
gives a length to width ratio of 12, a good approximation to the Table 2 value of 12.092.  
Assembly of the paper version is not easy, some hints for this can be found on [5] (useful 
for all versions of this puzzle). 
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Figure 3. Cross-section of a strut, and bottom view of the end a strut. 

2𝑓 

2𝑓

√3
 

√
2

3
𝑓 

Vertex of 

 tetrahedron 

http://www.puzzleparadise.ca/
http://www.pacificpuzzleworks.com/
http://mathworld.wolfram.com/Line-LineDistance.html
http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html
http://mars.wne.edu/~thull/fit.html
http://www.langorigami.com/

