
 
 



More Icosahedron Puzzles 
by George Bell 

Introduction 
In CFF 50 [1], Wayne Daniel introduced a fascinating new puzzle based on a dissection 
of an icoashedron into 40 non-regular tetrahedra.  In this article we will revisit the 
geometry of this puzzle.  We will find some new piece shapes and new puzzles, 
including a coordinate motion puzzle where the fit of the puzzle can be controlled by 
one parameter.  We use the same notation as Wayne Daniel [1]. 
 

Puzzle geometry 
We first cut an icosahedron into 20 identical “face tetrahedra” by drawing radial lines 
from the centre to each vertex (Figure 1).  Each face tetrahedron contains one 
equilateral face of the original icosahedron, and three identical isosceles faces.  We 
then subdivide each face tetrahedron into inner and outer tetrahedra by a plane going 
through the outside edge e and a point p between the centre c and v. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If we view the face tetrahedron projected into the plane perpendicular to the edge e, we 

get the diagram in Figure 1 (right), where 𝜑 = (1 + √5) 2⁄  is the golden ratio.  The 

location of the cut can be specified by the angle 𝜃 or the parameter f—the fractional 
distance from the centre of the icosahedron to v, the cut vertex.  Wayne Daniel chose 
the cut so that the line e-p is perpendicular to the opposite edge c-v, this corresponds to 

the choice of 𝜃 = 0 or 𝑓 = √5 5⁄ .  In general 𝜃 can be positive, negative or zero.  The 
simplest formula I have found which relates f and 𝜃 is: 

sin 𝜃 = (
√5

5
− 𝑓)√

𝜑 + 2

(𝑓𝜑)2 + (𝜑 − 𝑓)2
 

Figure 1. An icosahedron dissected. 
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Puzzle pieces 
We now glue these 40 tetrahedra together to make puzzle pieces.  Wayne Daniel 
devised a clever way to do this.  He considered four connected faces of an icosahedron.  
There is essentially only one way to do this where the starting and final faces do not 
share a vertex.  For example, in Figure 2, consider the faces {1, 2, 8, 9}.  We make the 
puzzle piece from the outer tetrahedra for faces 1 and 9, and the inner tetrahedra for 
faces 2 and 8.  It takes 10 such puzzle pieces to make a full icosahedron.  The reason 
this joining is so clever is that each piece is held in place by the outer tetrahedra of two 
other pieces covering its middle two faces.  In other words the puzzle is automatically 
interlocking!  What is not clear is if these puzzles can be assembled, we will return to 
this point later. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We now consider how these puzzle pieces could fill an icosahedron.  First, note that any 
piece is either right-handed (for example if made from faces {1, 2, 8, 9} or {1, 6, 15, 20}) 
or left-handed ({2, 1, 6, 15} or {1, 6, 7, 16}).  As Wayne Daniel noticed, what we need is 
a list of 10 sets of four adjoining faces, such that each face appears exactly once at the 
end of each set (outer tetrahedra) and exactly once in the middle of each set (inner 
tetrahedra). The fourpossible arrangements are given in Table 1. 

 Arrangement #0 Arrangement #1 Arrangement #2 Arrangement #3 

1 1, 2, 8, 9 (R) 1, 2, 8, 9 (R) 1, 2, 8, 9 (R) 1, 2, 8, 9 (R) 
2 2, 3, 10, 11 (R) 2, 3, 10, 11 (R) 2, 3, 10, 11 (R) 2, 3, 10, 11 (R) 
3 3, 4, 12, 13 (R) 3, 4, 12, 13 (R) 3, 4, 12, 13 (R) 3, 4, 12, 13 (R) 
4 4, 5, 14, 15 (R) 4, 5, 14, 15 (R) 4, 5, 1, 6 (L) 4, 5, 1, 6 (L) 
5 5, 1, 6, 7 (R) 5, 1, 6, 7 (R) 5, 14, 13, 19 (R) 5, 14, 15, 20 (L) 
6 18, 17, 9, 8 (R) 6, 15, 20, 19 (L)  7, 6, 15, 14 (L) 7, 16, 20, 19 (R) 
7 19, 18, 11, 10 (R) 8, 7, 16, 20 (L) 8, 7, 16, 20 (L) 8, 7, 6, 15 (R) 
8 20, 19, 13, 12 (R) 10, 9, 17, 16 (L) 10, 9, 17, 16 (L) 10, 9, 17, 16 (L) 
9 16, 20, 15, 14 (R) 12, 11, 18, 17 (L) 12, 11, 18, 17 (L) 12, 11, 18, 17 (L) 

10 17, 16, 7, 6 (R) 14, 13, 19, 18 (L) 15, 20, 19, 18 (R) 14, 13, 19, 18 (L) 

Figure 2. Icosahedron net with faces and vertices numbered (same as [1]). 
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Table 1.  Face numbers in ten overlapping groups of four, 
which cover an icosahedron (with left (L) and right (R) pieces identified). 

 



In Wayne Daniel’s original article [1], this table was incorrect, confusing many of us who 
attempted to build these puzzles.  Wayne Daniel sent us a corrected table, and our 
Table 1 can be considered a correction for Table 1 in the original article.  Wayne Daniel 
wrote that any solution must use 5 right-handed and 5 left-handed pieces.  Stephen 
Chin was the first to notice that this was not the case.  I wrote a program to search for 
all distinct arrangements which include the piece {1, 2, 8, 9}, and it finds only the four 
listed in Table 1, including the new Arrangement #0 which uses all right-handed pieces. 
 
Arrangements #0 and #1 are very regular, with pieces arranged symmetrically with 
respect to the vertical axis in Figure 2.  A subtle point is that arrangements #2 and #3 are 
actually mirror images of one another.  The pieces in #2 that are mapped to #3 after 

reflection are (1,2,3,4,5,6,7,8,9,10)  (8,9,10,6,5,7,1,2,3,4).  In Table 2, the six pieces in 
the “standard” locations (of arrangement #1) are shaded. 
 
To fully specify any right-handed puzzle piece, we need to list the sequence of cut 
vertices for the four faces {1, 2, 8, 9}.  Since there is a choice of 3 vertices for each face, 
it would appear that there are 34= 81 possible piece shapes.  However, many of these 
pieces are not connected or are identical.  In Table 2, we give the cut vertices for the 10 
connected pieces—each has a different mirror image, so 20 pieces total.  Some pieces 
can be rotated “end for end” (flipped) and they are unchanged, these pieces are called 
symmetric. 
 
The pieces are labeled by capital letters, with alternate letters A, C, E, G, … right-
handed pieces, and piece B is the mirror image of A, etc.  This is Wayne Daniel’s 
notation, but he listed only 12 unique pieces (A-L, see Figure 4 in [1]).  The pieces M-P 
he did not consider because the two middle cuts are made along the same vertex.  
Pieces Q-T have a more serious flaw in that they actually contain holes.  If these pieces 
are used in a puzzle, other pieces must connect through the holes and the pieces 
cannot be separated.  We will find no further use for pieces Q-T. 
 
 
 

Table 2.  Definitions of the ten right-handed pieces over faces 1, 2, 8, 9. 
 

Puzzles with ten identical pieces 
These puzzles must use Arrangement #0 in Table 1.  I wrote a program to solve these 
puzzles, it reports that only pieces I and M work with 10 identical copies (plus, of course 
their mirror images J and N), see Figure 3.  The 10xI or 10xJ puzzles were discovered 
by Stephen Chin, he also discovered that the fit of this puzzle can be adjusted by 
changing the angle 𝜃. 
 
 

Piece Cut Vertices Flipped Piece Cut Vertices Flipped 

A 1, 4, 3, 8 symmetric K 3, 1, 8, 4 symmetric 
C 1, 4, 3, 4 3, 4, 3, 8 M 3, 4, 4, 8 1, 3, 3, 4 
E 3, 4, 3, 4 symmetric O 1, 4, 4, 8 1, 3, 3, 8 

G 1, 4, 8, 4 3, 1, 3, 8 Q 1, 3, 4, 8 symmetric 

I 3, 4, 8, 4 3, 1, 3, 4 S 1, 3, 8, 4 3, 1, 4, 8 



 
 
 
 
 
 
 
 
 
 
 
 
This puzzle must be disassembled using coordinate motion, and Stephen Chin likes to 
adjust his puzzles so they will spin on a table for a second or two, then suddenly 
explode into 10 pieces.  The reason for the delay is that it can take time for the spin axis 
to coincide with the disassembly axis for the coordinate motion.  After many prototypes, 
he came up with the magic angle 𝜃 = 4.6° or 𝑓 = 0.389, which he uses in his 10xJ 
icosahedron puzzles.  He also adjusts the fit of his puzzles by beveling down the region 
identified in Figure 3. 
 
Because most cutting planes for this puzzle pass through the origin, these puzzles can 
be modified so that the assembled shape is any object with icosahedral (or higher) 
symmetry.  Indeed, we can also make the puzzle hollow by cutting out an inner 
icosahedron, or in general anything with icosahedral symmetry.  The easiest way to do 
this is to cut out an icosahedron from the centre of size f times the outer icosahedron 
(Figure 3). 
 
Stephen Chin put the assembled puzzle in a lathe and shaved the icosahedron into a 
sphere (Figure 4), football, bomb and apple.  Because the latter two do not have 
icosahedral symmetry, the pieces are no longer identical.  Turning a puzzle in a lathe 
which comes apart when spun presents great challenges, and the puzzle must be glued 
together (temporarily) for this step.  Even the sphere pieces in Figure 4 do not end up 
entirely identical, and must be reassembled in the right order for a perfect fit.  The apple 
version of this puzzle “1 Pinko Ringo” was one of the top vote getters in the 2010 IPP 
design competition [2]. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Piece I and M from the back (left), and from the front (right). 
The center of both pieces has been cut out, leaving a small icosahedron. 

 

Figure 4. Stephen Chin’s 10xJ puzzle, with sphere external form. 
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Because this puzzle is so difficult to make in wood, it is ideal for 3D printing.  I prefer the 
sphere versions because this removes most of the sharp edges on the pieces.  The 
pieces must slide easily against one another during assembly—many 3D printed 
materials are too rough and will require sanding or polishing.  To explore the effect of 
changing the parameter 𝜃 on the fit, I printed five sphere versions of this puzzle from 
𝜃 = 0.6°  to 8.6° in 2° intervals.  At 𝜃 = 8.6°, the puzzle goes together easily and falls 
apart just as easily when spun.  As 𝜃 is decreased, the puzzle becomes tighter and 

more difficult to assemble, until near 𝜃 = 0°, it appears impossible to assemble from 
rigid pieces.  The angle for the best delayed “explosion” is between 2.6° and 4.6° [3]. 
 
We note that the magic angle 𝜃 = 4.6° applies only to the 10xI (or 10xJ) puzzles.  The 
10xM puzzle is much easier to assemble or take apart, and the fit does not change 
much with 𝜃. 

 

Puzzles with different pieces 

A useful concept for these puzzles is a subassembly—this is simply some subset of the 
full icosahedron that the puzzle pieces can fill, usually several different ways.  For 
example, we can assemble 2xI to form S1 in Figure 5.  Five copies of S1 fill the 
icosahedron, and this is one way to assemble the 10xI puzzle.  We can also make S1 
from 2xM.  This tells us that 8xI + 2xM make a puzzle, and so on.  Two copies of S1 can 
be nested together, and can be filled by 2xG + 2xK.  Thus, we can make a puzzle from: 
2xG + 2xK + 4xI + 2xM.  Three copies of S1 can be filled by 2xI + 2xK + 2xO.  All these 
combinations give us many puzzles involving pieces G, I, K, M and/or O, all in 
Arrangement #0 (see Table 3). 
 
 
 
 
 
 
 
 
 
 
The subassembly S2 is mirror symmetric and can be made from 5xI.  Therefore we can 
also make S2 from 5xJ, this gives the puzzle 5xI + 5xJ in Arrangement #1, listed in [1].  A 
similar subassembly can be found for piece C, with the critical difference that it is not 
mirror symmetric.  To complete the puzzle requires 5xD, also in [1]. 
 
 
 
 
 
 
 

Table 3.  The number of puzzles for each arrangement using pieces A-P. 

Arrange- Number of different piece shapes in puzzle  
ment 1 2 3 4 5 6 7 8 9 10 Total 

0 2 4 10 17 8 0 0 0 0 0 41 
1 0 2 0 8 0 8 0 0 0 0 18 
2 0 0 0 4 20 82 104 122 30 4 366 

Figure 5. Subassemblies S1, 2xS1, 3xS1, and S2 

 



 
The puzzles presented so far are relatively easy, using the simplest arrangements #0 and 
#1.  More difficult versions of this puzzle use arrangement #2 or #3, and have as many 
pieces different as possible.  My program finds that pieces M-P can never appear in 
arrangements #1, #2 or #3, and that no puzzle with more than 6 different piece types has 
a unique solution.  In Table 3, arrangement #3 has exactly the same counts as 
Arrangement #2 by taking the mirror image of each puzzle. 

Table 4. All solutions for 4 puzzles with six or nine different pieces. 
 
In Table 4, I show two puzzles with 6 piece types with unique solutions, and two puzzles 
with 9 piece types with only two solutions.  In Table 4, the non-symmetric pieces have a 
trailing 1 or 2.  This indicates orientation, for example “G1” means piece G with face 
vertices and cut vertices in the order given in Tables 1 and 2.  “G2” indicates that the 
piece must be flipped end for end, so use the “Flipped” column in Table 2.  In the original 
article [1], Wayne Daniel gives the four puzzles with 10 different pieces, each has either 
8 or 12 assemblies.  

 
Any assembly using arrangement #2 or #3 can be separated into two non-identical 
halves, S3 and S4, as shown in Figure 6.  The halves are somewhat reminiscent of a 
Pennyhedron [4].  The partition of pieces numbered as in Table 1 is S3={1, 2, 7, 8, 9} with 
S4 consisting of the other five pieces (a second alternative is S3={1, 2, 3, 8, 9}).  Unlike 
a Pennyhedron, the two halves do not simply slide together.  Assembly requires 
coordinate motion where multiple pieces are shifted slightly, this does not depend much 
on the angle 𝜃.  If we remove piece 3 or 7, the remaining halves do slide together as rigid 
bodies.  A quick spin and the puzzle usually separates into these halves, from a pure fit 
perspective these puzzles are much easier to assemble and disassemble than the 10xI 
version. 
 
 
 
 
 
 
 
 
 
 
 

Pieces Arr. 1 2 3 4 5 6 7 8 9 10 

A+2x(B+G+I+J)+L 3 A I2 G1 B J1 G1 I2 B J2 L 

B+2x(G+I+J+L)+K 2 I2 G1 K L G2 J1 B J2 L I1 

A+B+C+D+F+ 2 G2 G1 I1 H1 C1 D2 B F J2 A 
2xG+H+I+J 2 A C2 I2 J2 G2 F B D1 H1 G1 

C+D+F+2xG+ 3 C1 I1 K D2 F G1 G2 H2 J2 L 
H+I+J+K+L 3 C2 G2 G1 H1 J1 K I1 D1 F L 

Figure 6. Separation of Arrangement #2 into non-identical halves, S3 and S4. 

 



A nice set of pieces for exploring this geometry is one each of the 12 pieces A-L (Figure 
7).  Using this set one can explore all of the 10-piece puzzles in [1].  With an extra G, the 
two 9-piece puzzles in Table 4 can be assembled, and with additional B, I, J and L all of 
the Table 4 puzzles can be assembled. In Figure 7, the assembled form is an edge-
beveled icosahedron with an internal hollow icosahedron [3]. 
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Figure 7. Pieces A-L with 𝜽 = 𝟎 shown alphabetically 
(left, same layout as Figure 4 in [1]), assembled (right). 
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