
  



The Pennyhedron Revisited 
by George Bell 

 
Introduction 
The Pennyhedron is a two-piece puzzle invented around 1971 by Stewart Coffin and his 
children (!) [1; 136-8].  The original version (Figure 1, right) has the maddening property that 
if you grab the assembled puzzle between two fingers of each hand, opposing fingers will 
always touch both pieces, and it will never come apart.  Separating the pieces requires an 
unnatural, three-fingered grasp, and we refer to this version as a 3-Finger Pennyhedron.  
Coffin named it a Pennyhedron because some of the first versions were hollow, with a penny 
inside. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Coffin initially considered the Pennyhedron an amusing toy—too simple to be a puzzle.  
However, it proved surprisingly popular as a puzzle.  One of the most popular versions he 
calls Pennyhedron Tricky Pair [1; 137-8] (Figure 1).  Both two-piece puzzles assemble into 
a rhombic dodecahedron (RD), but in very different ways.  The pair on the left comes apart 
easily using a two-fingered grasp and we refer to it as a 2-Finger Pennyhedron. 
 
From the beginning, the Pennyhedron did not refer to a single puzzle design, but a whole 
class of designs.  Coffin’s design #52 includes six Pennyhedron variations [2; 52-3].  In this 
article, a Pennyhedron is an interlocking dissection of the rhombic dodecahedron (RD) into 
two, three, or four pieces. 
 
For IPP33, Stephen Chin created several sets of around 15 different Pennyhedra.  Watching 
attendees amuse themselves figuring out how to take each RD apart inspired me to 
undertake a systematic search for all Pennyhedra designs using BurrTools [4].  This article 
presents my findings. 
 

Figure 1. Pennyhedron Tricky Pair (design #52C by Stewart Coffin) 
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Experienced puzzlers now recognize the RD and immediately try the three-fingered grasp.  
One way to confuse them is to change the external shape.  Any shape with octahedral 
symmetry will work including a cube (Figure 2), octahedron (see [2; 53]), cuboctahedron (the 
dual of the RD) as well as any RD stellation.  Another interesting option is the Stienmetz 
Solid or Tricylinder (Figure 2), the solid formed by the intersection of three cylinders at right 
angles.  This is a geometrical situation where the RD appears naturally—it has curved faces 
and a rotund, overinflated look.  Using color 3D printing, I have made a 3-Finger 
Pennyhedron in the form of a Tricylinder [3], jokingly referred to as a Pillowhedron (Figure 
2).  Although the pieces appear to screw together, they actually slide together without 
rotation.  Any Pennyhedron design can be adapted to the above external shapes, and can 
be solid or hollow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Puzzle geometry 
We consider the RD divided into 24 tetrahedra (tetras) by dividing each face in half and 
drawing radial lines from each vertex to the centre.  Coffin calls these “tetrahedral blocks” 
[1; 85, 103].  BurrTools [4] further subdivides each tetra into two equal pieces, so a tetra is 
a two-voxel piece in the “Rhombic Tetrahedra” geometry.  In Figure 1, the tetras are made 
from alternating wood types -- recommended for maximum obfuscation.  When any 
Pennyhedron is expertly made in this two-wood pattern, the divisions between pieces are 
virtually undetectable. 
 
Suppose we dissect an RD into two pieces made from tetras, and that each piece is 
connected.  If we try to separate these two pieces, one of three things can happen: 

1. The two pieces cannot be separated, both pieces are Unremovable (U). 
2. The two pieces can be separated in one direction only, called Slide Out (S). 
3. The two pieces can be separated in more 

than one direction, Fall Apart (F). 
 

Table 1 contains counts of piece types for pieces 
made from 5-19 tetras. Because pieces are 
classified in pairs, the row for 5 tetras has the 

same counts as the row for 24−5=19 tetras. 
 
One thing we have glossed over is that normally 
(for example, with polycubes) whether a piece 
can be removed depends not only on the 
piece itself, but also on its orientation and 
location within the puzzle.  However, 

Number Number of pieces of type 

of Tetras U S F Total 

5 or 19 0 0 8 8 
6 or 18 1 3 17 21 
7 or 17 2 11 22 35 

8 or 16 12 28 37 77 

9 or 15 40 52 42 134 

10 or 14 108 82 56 246 

11 or 13 190 104 57 351 

12 244 119 64 427 

Table 1. Piece counts by type 
(U=Unremovable, S=Slide Out, F=Fall Apart). 

 

Figure 2. A 3-Finger Pennyhedron disguised as a cube and a Pillowhedron. 

 



these tetra puzzle pieces are unusual in that there is only one location each can be placed 
within the RD (up to symmetry). This is because each tetra goes all the way to the centre of 
the RD.  So we can think of the classification (U, S or F) as a property of the piece itself. 
 
Ultimately, we are interested in whether or not a puzzle is interlocking.  Even for two-piece 
puzzles this is not a simple concept!  Informally, a puzzle is interlocking if the pieces hold 
one another in place.  The main clue that a two piece puzzle is not interlocking is that the 
pieces can move apart in more than one direction, or in more than one way.  Pieces of type 
F are not useful for creating interlocking puzzles, but as we will see, type S (and even U) 
pieces may or may not be interlocking.  One reason is that the classification above does not 
include twisting as a separation method.  Really, the only way to determine if a puzzle is 
interlocking is to make a physical copy. 
 
The figures below contain two-color diagrams. If it is not clear what puzzle piece is depicted, 
the reader should download the BurrTools files which are in the CFF download page for this 
issue.  If a puzzle is listed with no inventor, it is due to the author and Stephen Chin. 

 
Two-Piece Pennyhedra 
Two 12-tetra pieces must be of type S to interlock, and from Table 1 we see that there are 
119 such pieces.  There are 54 pairs of different pieces which form an RD, plus 11 pieces 
which can pair with themselves or their mirror image.  Figure 3 shows the three pieces which 
can be paired with their mirror image.  They include the familiar 3-Finger piece, plus two 
variations which can be obtained by moving one tetra.  The black arrows indicate which tetra 
is moved to make the piece to the right. 
 
 
 
 
 
 
 
 

 
 
 
Figure 4 shows three type S pieces which in identical pairs make an RD.  As two Pinwheel 
pieces come apart, they are free to rotate slightly around the axis of separation.  This extra 
movement means that the pieces are not interlocking. 
 
 
  
 
 
 
 
 
 
 
 

Figure 3. Standard 3-Finger (Coffin), Deep-cut 3-Finger and 2½-Finger pieces 

 

Figure 4.  Pinwheel, Standard 2-Finger (Coffin) and Deep-cut 2-Finger 

 



Many pieces have a “deep-cut” variation, where a “prong” sticking into one piece is 
extended, and the corresponding indentation enlarged. 
 
Figure 5 shows the Zig-Zag piece, which appears in Coffin’s writings [2; 52].  The Zig-Zag 
Pennyhedron is one of the more difficult two-piece Pennyhedra to open, because the usual 
two-fingered grip can only touch the same piece along half a face.  While 2- and 3-Finger 
pieces are composed of six tetras of each color, a Zig-Zag piece is made from eight tetras 
of one color and four of the other. The Zig-Zag piece has several variations, one a cross 
between a 2-Finger and Zig-Zag, and the other a deep-cut version (Figure 5).  All join with 
a copy of themselves. 
 
 
 
 
 
 
 
 
 
 
 
In Figures 3-5, we see 9 of the 11 pieces which can combine with identical or mirror image 
copies to form an RD.  The remaining two are Chaos (Figure 6) which has no symmetry and 
is unrelated to anything seen previously, and one more piece which is not shown because it 
does not interlock. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Of the interlocking pieces presented so far, only three are symmetric.  The 3-Finger piece is 
three-fold symmetric, and the 2-Finger piece and Zig-Zag each have two planes of mirror 
symmetry.  Out of 54 pairs of different pieces which make an RD, two are mirror symmetric.  
In Figure 6 we show one piece from each of these two pairs: Alternative 2-Finger and Split-
tail 2-Finger.  The Alternative 2-Finger is totally different from a normal 2-Finger piece, but 
opens using the same technique. 
 
In all these two-piece puzzles, we have used 12-tetra pieces.  Are there any interesting two-
piece Pennyhedra where the tetras are split unequally?  There are five more designs where 
the pieces have mirror symmetry—all of them can be obtained by starting with a symmetric 
puzzle (2-Finger, Zig-Zag, and Alternative 2-Finger) and moving one or two tetras from one 
piece to the other. 

Figure 5.  Zig-Zag (Coffin), Hybrid 2F-Zig-Zag and Deep-cut Hybrid 

 

Figure 6. Chaos, Alternative 2-Finger, and Split-tail 2-Finger 

 



 
 
Three-Piece Pennyhedra 
First, let us look for puzzles with three “unremovable” eight-tetra pieces (type U).  This may 
sound pointless, but remember that the unremovable classification considers removing one 
piece when the rest of the puzzle is fixed.  Coordinate motion (when three or more pieces 
move simultaneously) is very common in this geometry, so what we are doing is looking for 
coordinate motion (CM) puzzles. 
 
BurrTools finds three different three-piece Pennyhedra with all type U pieces.  The first uses 
three copies of the Hole-In-One piece shown in Figure 7.  This puzzle does indeed come 
apart by CM, however as the pieces separate they are free to move along the CM axis.  This 
extra direction of movement should lead us to suspect that the puzzle may not be 
interlocking, and indeed a physical copy confirms that the puzzle is loose and falls apart 
easily.  This is an example of a puzzle with all pieces of type U which is not even interlocking! 
 
 
 
 
 
 
 
 
 
 
 
 
Coffin was able to address this looseness by adding a pin to one piece and a hole to another 
(at the red dot in Figure 7).  His cleverly named Hole-In-One puzzle then becomes 
interlocking.  It is Coffin design #52A [2; 53]. 
 
Edi Nagata started with the Hole-In-One piece and modified it by removing and adding 
material along cuts outside the tetra geometry. The resulting piece (Figure 7) is no longer 
composed of tetras, but has the same exterior faces and volume as a Hole-In-One piece.  
His puzzle, 12 Diamonds uses three identical pieces and interlocks into an RD via “standard” 
CM. 12 Diamonds was Edi Nagata’s IPP33 exchange puzzle (the modified pieces would be 
difficult to make in wood, so it was 3D printed). 
 
The second puzzle uses three copies of the Rose piece (Figure 7), and was found in 2012 
by Stephen Chin.  He calls the puzzle a Rose Pennyhedron.  This is a very interesting puzzle; 
I believe it cannot be assembled from rigid pieces.  But since all wood flexes slightly, it does 
go together, and when made precisely the three pieces come together forcefully with a loud 
snap.  The interior edges of the pieces should be rounded, otherwise they are under such 
stress that they may break.  This is one Pennyhedron that can’t be made hollow; it’s also 
one of the more difficult Pennyhedra to take apart if you don’t know its secret (the name is 
a hint).  To help people at IPP33, Stephen Chin made a special “Rose Pennyhedron for 
Dummies” with a few tetras identified by a dark wood color. 
 
The third puzzle is called an Orchid Pennyhedron, it uses two copies of the Orchid piece 
plus one Hole-In-One piece (Figure 7).  It is the only puzzle of the three that does not use 

Figure 7. Hole-In-One (Coffin), 12 Diamond (Nagata), Rose (Chin) and Orchid 

 



all identical pieces, and also the only one which goes together with “standard” CM (and no 
piece modification).  The non-identical pieces have less symmetry and can bind up if you 
pull on two pieces, but it will always come apart if you grab each piece on opposite ends and 
pull (easy, if you have three hands)!  
 
Next, let us look for puzzles with two U pieces and one S piece.  The S piece will be the 
“locking piece” which must be removed first.  BurrTools finds three such designs using three 
eight-tetra pieces.  The first was discovered by Coffin.  He called it a Three-Piece 
Pennyhedron, design #52 (again!) [2; 52]. It uses three dissimilar pieces, and we call all 
three of these designs Three Dissimilar Piece Pennyhedra, or 3DP1 (Coffin’s design), 3DP2 
and 3DP3 for short (Figure 8).  Note that 3DP2 and 3DP3 share one piece, the middle piece 
in each puzzle in Figure 8, and that each piece is made from four blue tetras and four orange 
tetras. 
 
 
 
 
 
 
 
 
 
 
 
 
In Coffin’s design 3DP1, the locking piece contains two opposite faces of the RD.  To remove 
it, you simply grasp the locking piece by these two faces and pull in the correct direction.  
Naturally, if you cannot identify the locking piece, disassembly can be difficult.  However, 
3DP2 and 3DP3 are even trickier because the locking piece does not have two opposite 
faces to grab.  They are among the most difficult Pennyhedra to disassemble. 
 
So far, all the puzzles in this section use three eight-tetra pieces.  What other puzzles can 
we find if we use three pieces with a different number of tetras?  As far as coordinate motion 
goes, there is nothing else.  But using two U pieces and one S piece, BurrTools finds 26 
additional 3DP designs (included in the BurrTools files under the CFF download page for 
this issue).  We note that not all of them are interlocking, and others are variations of puzzles 
presented in this section. 
 
Four-Piece Pennyhedra 
With all the three-piece puzzles we have found, it may come as a shock to learn that there 
are no four-piece Pennyhedra made from tetras!  Why?  From Table 1, we see that there 
are no U or S pieces with fewer than six tetras.  Therefore, a four-piece interlocking puzzle 
can only use the four U or S six-tetra pieces (plus their mirror images).  BurrTools quickly 
confirms that there is no combination of any number of these pieces which forms an RD. 
 
To find a four-piece Pennyhedron, we must go to a finer dissection of the RD.  The first four-
piece Pennyhedron was introduced in 2007 at IPP27 in Australia by Stuart Gee.  Stuart Gee 
and Stephen Chin subsequently refined the design, and it was Stephen Chin’s IPP33 
exchange puzzle, De Doe Dak Ka (Figure 9).  To make this puzzle, you must cut each tetra 
in half: each piece is made from twelve half-tetras (or three tetras and six half-tetras).  The 

locking piece 

Figure 8. The three pieces of 3DP2 (left) and 3DP3 (right) 

 

locking piece 



puzzle consists of four identical pieces with three-fold symmetry, and assembles via 
“standard” CM.  This puzzle is most easily disassembled by spinning it. 
 
The coordinate 
motion planes in this 
puzzle are the faces 
of an internal cube.  
Therefore, if the 
external shape is cut 
down to a cube, and 
an internal cube is 
also removed, 
rather amazingly the 
puzzle becomes a 
cubical box.  In 2011, I started from De Doe Dak Ka and designed The Dice Box (Figure 10); 
it looks like a different puzzle, but is internally identical.  The Dice Box was 3D printed by 
Scott Elliott.  He figured out how to print each piece flat, with living hinges you can fold along 
to form the final puzzle piece, held together by 3D-printed snaps. 
 
By shifting the external triangular plates, it is possible to create versions of The Dice Box (or 
De Doe Dak Ka) where the pieces are no longer identical.  For example, there is a version 
of the puzzle with three different piece types, with two copies of one piece needed (Figure 
10, right).  It assembles into a cube using the same CM. 
 
 
 
 
 
 
 
 
 
 
 
 
Summary 
We have uncovered all Pennyhedra puzzles composed of 24 tetras, thanks to BurrTools [4]. 
However, additional Pennyhedron designs await discovery—because we can always dissect 
the RD at a finer level. 
 
A nice collection of wood Pennyhedra is a set of 10–20 RD, identical in appearance, each 
composed of two, three, or four pieces and coming apart in different ways. Contact Stephen 
Chin (chins@ihug.com.au) if you are interested in such a collection.  Beware his 6-Finger 
Pennyhedron, a “one-piece” RD which does not come apart! 
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Figure 9. De Doe Dak Ka 
(photos courtesy Nick Baxter) 

 

Figure 10. The Dice Box (2011), a version with three different pieces (right) 
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