
 

 

More Balls in a Box 
by George Bell 

 
Introduction: A brief history of ball packing puzzles 
 
In a 1960 Scientific American column, Martin Gardner asked for the maximum number 
of 1” diameter spheres which can be packed into a box with inside dimensions 10” x 
10” x 5” [1].  Gardner warned readers that this is “an exceedingly tricky little problem”, 
and with more than 500 pieces it is too complex to make a good physical puzzle. 

 
To create puzzles of reasonable size 
people started with many fewer spheres 
and joined them together to form pieces, 
called polyspheres.   
 
One of the first polysphere box-packing 
puzzles was Warp-30 by Leonard 
Gordon [2], sold by Kadon Enterprises 
[3] in 1988 (Figure 1).  This puzzle 
involves packing eight pieces composed 
of 30 balls into two boxes as well as 
building two pyramids (in this document 
I will use the words “sphere” and “ball” 
interchangeably).  Another Leonard 
Gordon design from this time period is 
Ell of a Puzzle [2] (8 pieces, 32 balls). 

In the 1990’s Wolfgang Schneider 
became interested in this type of puzzle 
and published “Balls in a Box” in CFF38 
[4].  Two of his designs are Balls in a 
Box (1995) and Cube Ball Ogy (1995) 
[5], made by his company kubi-games.  
Sadly, Wolfgang Schneider passed 
away in 2003. 
 
Perhaps the most well-known puzzle of 
this type is Stewart Coffin’s Ball Room 
(design #197-A) [6], Jerry Slocum’s 
IPP25 exchange puzzle (Helsinki, 
2005).  The four pieces are composed 
of 14 balls, and pack into the box 
(Figure 2) as well as building two 
pyramids.  Iwahiro (Hirokazu Iwasawa) 
also has one puzzle which fits into this 
category: Dango Box (9 pieces, 30 
balls) made by himself and later by Philos. 

Figure 2. Ball Room by Stewart Coffin 

(2005), photo courtesy Nick Baxter. 

 

Figure 1. Warp-30 by Leonard Gordon 
(1988), photo courtesy Kate Jones. 
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Packing spheres in square layers 

Most of these puzzles place spheres diagonally in square packing layers as shown in 
Figure 3. We show only the first two layers—after this the layering pattern is repeated, 
which results in face-centred cubic (FCC) sphere packing.  Conveniently, this diagonal 
packing is exactly the way sphere puzzles are entered into BurrTools [7].  Another nice 
feature of this packing scheme is that all square packing planes are parallel to the 
faces of the box, this means that every box face looks like Figure 3.  Hexagonal 
packing planes are always present, they are parallel to the faces of an internal 
tetrahedron (Figure 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We should mention that there are other ways to pack spheres in boxes even using 
square packing layers. Part of the appeal of Warp-30 and the Wolfgang Schneider 
puzzles is the different ways the pieces can be packed into boxes.  See [4] for details. 
 
If the BurrTools spacegrid is a x b x c, the number of balls which can be packed in the 
box using this packing scheme is ⌈𝑎𝑏𝑐 2⁄ ⌉.  Here the brackets represent the ceiling 
function, rounding up to the nearest integer. The puzzles in the introduction use the 
following box sizes: Warp-30, 5 x 4 x 3 (30 balls); Ell of a Puzzle, the Schneider 
puzzles and Dango Box 4 x 4 x 4 (32 balls); Ball Room 3 x 3 x 3 (14 balls). 
 
If a or b is even then each horizontal layer contains ℎ = 𝑎𝑏 2⁄  balls.  If a and b are both 
odd then the horizontal layers alternate between ℎ = ⌈𝑎𝑏 2⁄ ⌉ and ℎ − 1 balls (Ball 
Room is an example of this, the horizontal layers alternate between 5 and 4 balls). 
 
What are the inside box dimensions?  Suppose we use balls of diameter 1. The 

distance between square packing planes (for face-centred cubic) is  𝑠 = √2 2⁄ , so the 
box length is 1 + (𝑎 − 1)𝑠 (as shown in Figure 3 for a = 4). The same holds for the 
other dimensions b and c.  For Martin Gardner’s problem [1], the largest spacegrid 
which fits in the box is 13 x 13 x 6 with 507 balls.  This is not an efficient packing due 
to large gaps along the edges of the box, but it is better than cubic packing (500 balls). 
 
Wood balls are available only in certain sizes.  Woodworkers can calculate the box 
size required and create a custom box.  If the pieces are 3D printed you can start with 
a commercially made box and adjust the ball size to fit the box. If you use wood balls 
and commercially made boxes, the reality is that the sizing rarely works out. 
 
An interesting modification of this type of puzzle is to replace the spheres with rhombic 
dodecahedra.  We can also truncate the rhombic dodecahedron which is equivalent 
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Figure 3. Packing diagonally in a square grid with a=b=c=4, 
the 3D packing tilted to show hexagonal packing planes. 
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to an edge-beveled cube.  Figure 4 shows the transformation of a rhombic 
dodecahedron into a cube by truncation of the degree 4 vertices.  When edge-beveled 
cubes are substituted for spheres, usually the box must be resized to fit them.  Only in 
one special case is the box size unchanged—when the distance between opposing 
hexagonal faces is the same as that between opposing square faces (the middle red 
solid in Figure 4).  This sizing trick works only for the boxes in this section. 
 
 
 
 
 
 
 
 
 
 
 
When the pieces are made from edge-beveled cubes, the puzzle may become 
interlocking.  It may be necessary to assemble the pieces outside the box and then 
slide the assembly in.  One may not even need the box! 
 
Packing spheres in hexagonal layers 

Why not pack the spheres in hexagonal layers?  Figure 5 shows one option.  From a 
puzzle design standpoint, there are several problems.  First, the box isn’t a cube—in 
general all three dimensions will be different (which means a custom box). Second, 
we can’t have hexagonal (or square) packing on the vertical box faces.  The result is 
that some layers must have annoying gaps, in Figure 5 all three layers have gaps. 
 
 
 
 
 
 
 
 
 
 
 
 
 
There is another problem.  If alternate layers 1 and 2, this does not give face-centred 
cubic packing!  As explained in [8], we get hexagonal close packing.  While it may be 
possible to pack the box using polyspheres, in general we may need the more 
complicated hexaspheres [8].  When there are more than 2 layers, solving such 
puzzles in Burrtools is possible, but is more difficult [8]. 
 
In order to preserve face-centred cubic packing, it is necessary to add layer 3, shown 
in Figure 5.  This 9-ball pattern does not fill the box very efficiently, if we make the box 
wider, the six balls marked by the dashed lines will fit, but there will be larger gaps in 
layers 1 and 2.  I think the best option is to alternate layers 1 and 2, then each layer 

Figure 5. Spheres packed in hexagonal layers, a=4, b=3. 

 

1 + 4𝑡 

Figure 4. Truncation of a rhombic dodecahedron to a cube. 
The middle version is special because it requires no change to the box size. 
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contains 12 balls.  Note that when the packing is only two layers high, there are 
insufficient layers to distinguish face-centred cubic from hexagonal close packing. 
 

In Figure 5, 𝑡 = √3 2⁄  is the distance between hexagonal packing lines.  In general, 
the box length is 1 + (𝑎 − 1)𝑡 + 𝑡 3⁄  and the box width is 𝑏 + 1 2⁄ . The box height is 

1 + (𝑐 − 1)𝑢 where 𝑢 = √6 3⁄  is the distance between hexagonal packing planes 
(same as the height of a regular tetrahedron of edge length 1).  The total number of 
balls in the box is ⌈𝑎𝑏𝑐⌉ (rounding up is still necessary because b can be a half integer). 
 
This packing is very efficient for Martin Gardner’s problem [1] (oriented the optimal 
way).  We use a = 11 columns of balls alternating between 4 and 5 balls (b = 4.5), and 
c = 12 layers for a total of 594 balls (this is the maximum possible [1]). 
 
Another option is to use a box which is a regular hexagon, shown in Figure 6.  The 
length of the hexagonal box is 1 + 3𝑡 + 𝑡 3⁄  (same as the Figure 5 box). Alternatively, 

we can use a cylindrical box of inside diameter 1 + (4√7) 𝑡 3⁄ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As with the box of Figure 5, if we alternate layers 1 and 2 we have hexagonal close 
packing.  In order to get face-centred cubic we need to add layer 3 with only 7 balls 
and lots of empty space.  Another way to preserve FCC is to shrink the box as indicated 
by the dashed green circle (diameter 1 + 8 𝑡 3⁄ ) which encloses 6, 6, and 7 balls per 
layer.  However, in the next section, we’ll choose not to preserve FCC. 
 
 

 

 

 

 

 

New Puzzles 

The boxes in Figures 5 and 6 both have 12 balls per layer (if we alternate layers 1 and 
2).  The simplest boxes are two layers tall and fit 24 balls. We will call the box in 
Figure 5 a “2-layer rectangular box” and the round box in Figure 6 a “2-layer cylindrical 
box”. 

Figure 6. Spheres packed in a hexagonal or cylindrical box. 
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Figure 7.  Names for 10 planar polysphere pieces (left 5 are orthogonal). 

 

L3 T4 L4 S4 O4 W4 J4 P4 C4 Y4 



 

 

Table 1.  Puzzles using the rectangular box of 
Figure 5 or the cylindrical box of Figure 6. 

 

 
Planar polyspheres with 90 degree angles (orthogonal polyspheres) are interesting to 
use in these boxes because they cannot lie flat in a layer.  Eight copies of L3 can fill 
the 2-layer rectangular box, and six copies of T4 can fill the 2-layer cylindrical box.  
These are the only solutions using identical copies of an orthogonal polysphere. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Packing six T4 into the cylindrical box is not difficult, but the pieces cannot be added 
one at a time because there is not enough room to insert the last piece.  The easiest 
way to assemble this puzzle is outside the box, then lowering the assembly into the 
box.  Made from edge-beveled cubes, the pieces become interlocking and can be 
assembled using coordinate motion. I call this puzzle Chocolate Box (Figure 8).  
Unfortunately, coordinate motion is not required to assemble this puzzle, it is easier to 
assemble by slotting together identical halves. 

 

 

 

 

 

 

 

Table 1 summarizes puzzles using these rectangular and cylindrical boxes with 2 to 4 
layers.  When more than two layers are used, we alternate layers 1 and 2.  For the 
puzzles with 3 or 4 layers, the packing is not face-centred cubic.  Solving these puzzles 
in BurrTools [7] requires special tricks as discussed in [8].  In addition, edge-beveled 
cubes cannot be substituted for spheres. 

Summary 

We began this journey by considering ways that spheres can pack into boxes.  Along 
the way, the boxes morphed into cylinders, and the spheres morphed into rhombic 
dodecahedra!  Chocolate Box (Figure 8) uses pieces made from (edge-beveled) cubes 

  no. of solns  

layers pieces rect. cyl. 

2 8: 8xL3 79 0 
2 6: 6xT4 (Chocolate Box) 0 1 
2 6: T4, L4, S4, W4, J4, P4 5 1 
2 6: T4, L4, S4, O4, C4, P4 1 0 
3 12: 12xL3 0 1 

4 16: 16xL3 12,007 30 

3 9: L4, T4, O4, W4, C4, D4, J4, Y4, P4 4 1 

Figure 8.  Chocolate Box by George Bell, box made by Stephen Chin, 
photo courtesy Nick Baxter. Right: coordinate motion assembly. 

 



 

 

which must be packed into a cylindrical box.  It is not easily identifiable as a ball 
packing puzzle, but is still based on the fascinating geometry of sphere packing. 
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