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Introduction 

Golden rhombohedra (Figure 1) make fascinating building blocks for puzzles, we’ll refer to 
them as rhombs.  They come in two varieties: Prolate and Oblate.  These terms can be 
hard to remember so we’ll use Fat (F) and Thin (T).  Imagine a wireframe cube with flexible 
joints.  To make each rhomb, we squash the cube so that every face becomes a golden 
rhombus (the ratio of the diagonals is the golden ratio  

𝜙 = (√5 + 1) 2 ≅ 1.618⁄ ).  Rhombs have many wonderful properties and have been called 

the 3D analogue of Penrose tiles [2]. 
 
One reason puzzles made from rhombs are interesting is because they are so far removed 
from the familiar cube-based geometry.  A nice way to explore this geometry is using 
Zometool [1], any rhombic polyhedron can be constructed using only red struts.  You can 
even build these puzzles using Zometool, but unfortunately it is not possible to assemble 
them because the pieces have duplicated vertices and edges.  Making workable puzzles 
has been the domain of the master woodworker, consequently wood copies are rare and 
highly valued. 
 
In Part 1 we’ll discuss the geometry of these puzzles, and introduce the basic puzzles 
created by gluing together rhombs.  In the 1980’s, Wayne Daniel created more complex 
puzzles by cutting each rhomb into identical or mirror image halves.  In Part 2, we’ll present 
a detailed accounting of split-rhomb puzzles. 
 

 

Figure 1. Fat and thin rhombs connected using Zometool [1].  The black 
(white) vertex will become the triacontahedron south pole (north pole). 

 



 

 

Puzzle Geometry 

Figure 2 shows four polyhedra which can be constructed out of rhombs, summarized in 
Table 1. These polyhedra are normally preceded by the words “golden” and “rhombic”.  In 
this article we’ll often leave these qualifiers out.  Note that the Figure 2 dodecahedron is 

NOT the common rhombic dodecahedron where the ratio of the diagonals is √2.  The 
Figure 2 dodecahedron is often called a “rhombic dodecahedron of the second kind” or 
“Bilinski dodecahedron” [3]. 

 
 
 
 
 
 
 
 
 
 

rhombic external # of intern. # of rhomb # of internal 
polyhedron faces verts edges  vertices decomps rhombs 

dodecahedron 12 14 24 1 1 (2F + 2T) 0 
icosahedron 20 22 40 4 1 (5F + 5T) 1T 
triacontahedron 30 32 60 10 2 (10F + 10T) 1F + 3T 
hexecontahedron 60 62 120 1 1 (20 F) 0 

 
 
An internal vertex is not part of the basic 
polyhedron, but is a vertex in the 
decomposition into rhombs.  Likewise, an 
internal rhomb is one which contributes 
no face of the final polyhedron. 
 
The (Bilinski) dodecahedron can be 
decomposed into 2 fat (red, blue) and 2 thin 
(green, yellow) rhombs, as shown in 
Figure 3.  Note that this decomposition has 
a directionality to it, with the fat rhombs on 
the left and the thin rhombs on the right, as 
indicated by the arrow. 
 
There are two known decompositions of the triacontahedron into rhombs (plus their mirror 
images, not counted as different).  Any decomposition must have exactly one internal F.  
The long F diagonal is 80% of the triacontahedron diameter, making it difficult to fit even one 
inside!  The internal F “core” defines the axis between N and S poles, perched on top is a 
thin rhomb defining the N pole (see Figures 1 and 4). Figure 4 (right) show the further 
decomposition of the triacontahedron into the N pole, three dodecahedra plus S pole 
“leftovers” (including the core). 
 

Table 1. Properties of rhombic polyhedra. 

 

Figure 2. Rhombic polyhedra: dodecahedron, icosahedron, 
triacontahedron and hexecontahedron. 

 

Figure 3. A (Bilinski) dodecahedron 
decomposed into 2F + 2T. 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remember that the dodecahedron decomposition had a directionality to it.  If we further 
decompose the three dodecahedra in Figure 4, there are two possibilities, diagrammed in 
Figure 5: 

1. The directionality (arrows) go around the same direction viewed from the N pole.  This 
leads to triacontahedron decomposition with 3-fold symmetry. 

2. One arrow points opposite the other two.  This leads to a triacontahedron 
decomposition with no overall symmetry.  But, rather remarkably, we can add six 
(light blue) rhombs to the green dodecahedron to form the icosahedron!  What 
remains is a yellow end cap (10 rhombs).  The yellow end cap decomposition has 3-
fold symmetry, but about a different axis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Curiously, all measurements of these polyhedra involve the Golden Ratio.  The fat rhomb 
can be defined by the three edge vectors: (𝜙, 𝜙2, 0), (−𝜙,𝜙2, 0) and (0, 𝜙, 𝜙2).  The thin 

rhomb uses the same first two edge vectors plus (−𝜙2, 0, 𝜙).  Each face has a long diagonal 

of length 2𝜙2, a short diagonal of length 2𝜙, and an area of 2𝜙3. 
 

The rhomb edge length is 𝑒 = 𝜙√𝜙 + 2 ≅ 3.078.  The fat rhomb has volume 2𝜙5, and the 

thin rhomb 2𝜙4.  Using Table 1 and the identity 𝜙2 = 𝜙 + 1 we can determine the volume of 

the dodecahedron (4𝜙6), icosahedron (10𝜙6), triacontahedron (20𝜙6) and hexecontahedron 

(40𝜙5). 

Figure 4. Triacontahedron core plus N pole rhomb; a triacontahedron 
decomposed into three dodecahedra plus N and S pole pieces. 

 

Figure 5. Two options for the directionality of the Figure 4 dodecahedra.  The 
nonsymmetrical configuration leads to the icosahedron (green + light blue). 

 

symmetrical blue is 
reversed 

N pole 
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The lengths above are in unscaled units.  To make puzzles, we will scale all lengths by a 
scale factor s.  To choose s one needs to know the desired puzzle size.  The face to opposite 
face distance is 4𝜙 + 2 ≅ 8.47 for the triacontahedron, and 3𝜙 + 2 ≅ 6.85 for the 
icosahedron.  If you are 3D printing you can apply your own scale factor to print the puzzle 
any size you like.  On wood puzzles, the face to face distance can be measured with calipers 
to determine the scale factor (and edge length).  You can measure the edge length directly, 
but it is difficult to get an accurate value. 
 
Exact values for the vertices for these polyhedra can be found in the supplementary material 
for this CFF article.  After the vertices are entered into a program, the edges are easily 
identified because rhombic polyhedra have equal edge lengths.  Including the internal 
vertices gives the decomposition into rhombs.  One can move between the two 
triacontahedron decompositions by moving a single internal vertex. 
 
A few of the puzzles listed below have names—many do not.  To classify the designs, we 
use the designers initials, followed by “RI” for a rhombic icosahedron puzzle or “RT” for a 
rhombic triacontahedron, followed by a number.  For designers we use WD (Wayne Daniel), 
AG (Albert Gübeli), RB (Rik Brouwer), SC (Stephen Chin) and GB (George Bell). 
 
Icosahedron Puzzles 

The icosahedron has one decomposition into 10 rhombs, this decomposition contains a 
(Bilinski) dodecahedron but has no overall symmetry.  There is always one thin rhomb which 
is internal.  For the purposes of orienting these puzzles, it is often useful to identify this 
internal thin rhomb. 
 
By gluing together 10 rhombs, it is not easy to make an interlocking puzzle.  We have found 
four 3-piece designs: Albert Gübeli designed Aurels (AGRI01) in 2004, and Stephen Chin 
SCRI01 – SCRI03 in 2016 (Figure 6).  All have the property that any piece can come out 
first.  SCRI03 was Stephen Chin’s exchange puzzle at IPP36 (Kyoto, 2016), with the name: 
Golden Rhombic Icosahedron. 
 
 
 
 
 
 
 
 
 
 
Triacontahedron Puzzles 

A good triacontahedron puzzle to begin with is Mateos (AGRT01), designed by Albert Gübeli 
in 1989 (Figure 7).  Start with three 4-rhomb batman pieces (so named because of the 
similarity to the infamous superhero logo).  Each batman piece takes 1F + 1T from the 
bottom yellow S pole in Figure 4 plus 1F + 1T from each dodecahedron.  What remains (the 
yellow piece in Figure 7) are 8 rhombs combining N pole and core with 3F and 3 internal T, 

Figure 6. SCRI02 (assembled), SCRI03 (pieces), s=9.2 mm.  Made by S. Chin. 

 



 

 

this piece has 3-fold symmetry.  Albert Gübeli found (rather remarkably) that this yellow 
piece can be cut into two mirror image halves (4 rhombs each). 

 

 

 

 

 

 

 

Mateos has five pieces and can be assembled in two mirror image ways.  The batman pieces 
are added to the two core pieces.  Interestingly, the assembly does not interlock until the 
final piece is inserted, even though the last 3 pieces are identical and can be inserted in any 
order.  This is a hint that coordinate motion designs lurk nearby. 

Mateos can be modified in several ways to create three and four piece coordinate motion 
puzzles.  First, we can transfer two more rhombs to the batman piece to form a 6-rhomb 
“spoon” piece (Figure 7).  Three spoons go together with coordinate motion, but the 
assembled puzzle is missing the N pole and core. 

There are several ways to modify the spoon piece to form the full triacontahedron.  One 
solution is to add the N pole to one spoon, the core rhomb to the second, and leave the third 
alone.  This results in a coordinate motion puzzle GBRT01 where all three pieces are 
different.  Another possibility is to cut both missing rhombs into three identical pieces (there 
are several ways to do this).  Adding one third to each spoon results in a coordinate motion 
puzzle of three identical pieces, GBRT02. 

ID Designer Year Pcs Co-Mo? Comments 

AGRT01 Albert Gübeli 1989 5 no Mateos 

RBRT01 Rik Brouwer 2006 4 yes Triakon [2] 

AGRT02 Albert Gübeli 2015 4 yes Soccerit, IPP35 

SCRT01 Stephen Chin 2016 4 no Uses non-symmetrical decomp. 

SCRT02 Stephen Chin 2016 4 no  

GBRT01 George Bell 2016 3 yes  

GBRT02 George Bell 2016 3 yes Three identical pieces. 

GBRT03 George Bell 2016 4 yes  

 

A different strategy is to move one rhomb from the yellow end cap to each batman piece, 
we end up with 4 pieces of 5 rhombs each.  There are many ways to do this, but one option 
results in Rik Brouwer’s coordinate motion puzzle Triakon [2], classified as RBRT01.  
Another option (GBRT03) yields three pieces plus what remains of the yellow cap (4 rhombs) 

Figure 7. Mateos (AGRT01), “batman” piece, “spoon” piece. 

 

Table 2. Triacontahedron puzzles using full rhombs (sorted by year). 

 



 

 

which retains 3-fold symmetry.  The three pieces go together using coordinate motion and 
the final piece locks them in place. 

 

 

 

 

 

 

 

There are also modifications of Mateos which are serially interlocking.  An example is 
SCRT02, where the batman piece is the last to be go in (Figure 8).  Soccerit (AGRT02) is a 
totally new 4-piece design by Albert Gübeli where one of the pieces contains a hole. All the 
designs above use the symmetrical decomposition of the triacontahedron into rhombs.  
SCRT01 is the exception, it is a 4-piece design based on the non-symmetrical 
decomposition. All these puzzles are summarized in Table 2. 

Summary 

Rhombs are useful building blocks for puzzles, the target shapes are primarily the rhombic 
icosahedron and rhombic triacontahedron (hexecontahedron, anyone?).  These puzzles are 
challenging to make in wood, and are consequently rare and expensive.  Please contact 
George Bell (gibell@comcast.net) if you would like stl files for 3D printing personal copies of 
these puzzles.  Stephen Chin may also have a few spare wood copies available 
(stephenchin57@gmail.com). 
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Figure 8. SCRT01 (assembled), SCRT02 (pieces), s=9.2 mm.  Made by S. Chin. 
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