Lominoes for G4GX

George Bell gibell@comcast.net

Lominoes are L-shaped polyominoes of width one, they were named by Alan Schoen [1]. The lomino " $Li \times j$ " can be obtained by taking a rectangle with *i* columns and *j* rows, and removing all but the bottom row and leftmost column (Figure 1). In order that the resulting piece be L-shaped we require $i \ge 2$ and $j \ge 2$. We consider **free** lominoes (which can be flipped over), so $Li \times j$ is the same as $Lj \times i$. For more information on lominoes in general, see Alan Schoen's article [1]. For details on the puzzle below and how it was created, see my G4G9 exchange document [3] which can be found on my web site [4].

		•
		•
		_

Figure 1: The lomino $L6 \times 3$, which has area 8.

Instructions:

Figures 2 and 3 contain all lominoes of area 8, 9, and 10. Cut these pieces out along the solid lines (to avoid cutting up this book, download a pdf copy of this document at [4]). Your challenge is to pack the eleven pieces into a 10×10 square. There are 5 solutions to this puzzle, not counting rotations and reflections. However, there is only one solution where all the pieces are face up—the lettering provides a clue to help you find this solution. No solution is given here, you can find one on my web site [4].

Using a subset of these 11 pieces, one can also make 17 rectangles of various sizes [2]: $9 \times j$ for $j = 10, 9, \ldots, 3, 10 \times 8, 11 \times 6, 11 \times 5, 11 \times 4, 12 \times 7, 12 \times 6, 13 \times 7, 13 \times 5,$ and 15×6 . For these challenges, turning over pieces is allowed, and will be necessary in most cases.

- Alan H. Schoen, A Potpourri of Polygonal and Polyhedral Puzzles, in *Homage to a Pied Puzzler*, edited by Ed Pegg, Jr, Alan H. Schoen and Tom Rodgers, A K Peters, 2009.
- [2] Ishino Keiichiro, Puzzle Will Be Played, Lomino100 puzzle http://puzzlewillbeplayed.com/1010/Lomino100/
- [3] George Bell, Lominoes for G4G9, G4G9 exchange book.
- [4] http://home.comcast.net/~gibell/puzzles/

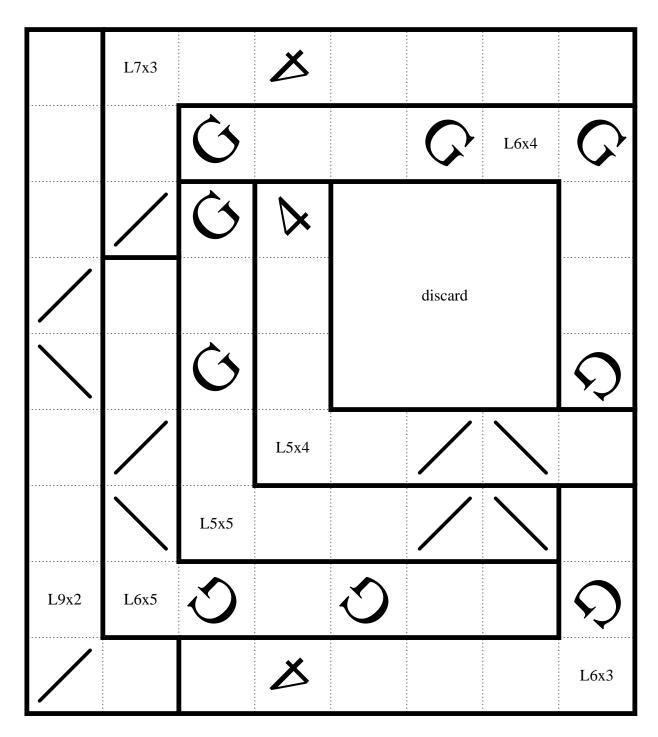


Figure 2: The first 7 lominoes for the puzzle task.

		/	\searrow			L8x3	/
L7x4	Ċ			S		S	
\triangleright				discard			
	/	L7x2			\mathbf{i}	/	
	discard						
\odot		C			Q	L8x2	\mathfrak{O}

Figure 3: The final 4 lominoes for the puzzle task.